2.5 Continuidad y discontinuidad.

objetivo: El objetivo de este blog es indagar                                                            e interactuar en actividades, enlaces y vídeos                                                                  para cualquier visitante o persona que requiera                                                 información sobre: Continuidad y discontinuidad.


2.5 Continuidad y discontinuidad


Continuidad

Función continuaf(x)=x2
Intuitivamente, la continuidad significa que un pequeño cambio en la variable x implica sólo un pequeño cambio en el valor de f(x), es decir, la gráfica consiste de un sólo trozo de curva.
Función discontinua  f(x)=sgn x
En contraste, una gráfica como la de la función f(x) = sgn x (signo de x) que consiste de pedazos de curva separados por un vacío en una abcisa exhibe allí una discontinuidad.
La continuidad de la función f(x) para un valor a significa que f(x) difiere arbitrariamente poco del valor f(a) cuando x está suficientemente cerca de a.
Expresemos esto en términos del concepto de límite...

Definición De Continuidad

Una función f(x) es continua en un punto a si limx->af(x) = f(a).

Ejemplos de discontinuidad

f(x)= 1/x2

Discontinua en x=0 (No existe f(0))

   f(x) = x2 si x <= 2
        2x - 4 si x > 2

Discontinua en x=2.

Si bien existe f(2), no existe limx->2f(x), pues limx->2-f(x)=4 y limx->2+f(x)=0
Sin embargo, si miramos la función para x próximos a 2 pero menores, e ignoramos los x mayores que 2, la función es continua en 2 "por la izquierda".

Definición De Continuidad por la izquierda

Una función f(x) es continua por la izquierda en el punto a si existe f(a) y limx->a-f(x) = f(a).

Definición De Continuidad por la derecha

Una función f(x) es continua por la derecha en el punto a si existe f(a) y limx->a+f(x) = f(a).
La función anterior es continua por la izquierda en x=2, pero no por la derecha.



Consultado el 27-11-2015 Leer mas en:
http://matematica.50webs.com/continuidad.html

ARYA, J. C. (2009). Matemáticas aplicadas a la administración  y la economía. Ciudad de México: Pearson Educación.

No hay comentarios:

Publicar un comentario